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STORAGE ANALYSIS OF SEASONAL NET INPUTS·

by

Felino P. Lansigan **

1. Introduction

The inherent fluctuations of hydrologic 'phenomena such as the
natural discharge of rivers have shown significant impacts on the
social, economic and political activities of man. Their effects become
even more intensified due to the rapidly increasing population all .
competing for the limited water resources available. Aside from the
natural variability of hydrologic variables, the temporal and spatial
distribution of water resources determines their full or limited
utilization to satisfy the demand.

Water storage is the basic means for providing water transfers
in time and space through which the supplies and the demands can
be matched. Numerous water storage structures have been construct­
ed to make optimal and efficient use of available water resources.
As the number and the size of these structures increase, a need arises
to develop a more refme and efficient design procedures. Thus,
these procedures have evolved from simple empirical techniques to
more elaborate and accurate techniques. A branch of hydrology that
evolved looking for solutions to water storage problems is the stochas­
tic theory of storage (Lloyd, 1967; and Klemes, 1981).'

One problem of particular interest in storage theory involves
the analysis of non-stationary periodic stochastic processess of
inflows and outflows in determining the required storage capacity of
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a reservoir. Several methods have been developed such as the so­
called sequent-peak algorithm (Thomas and Fiering, 1963; and Fier­
ing, 1965). The analytical treatment of water storage capacities of
periodic-stochastic inflows and outflows using range analysis of
cumulative (partial) sums of random variables has also been dealt
with elsewhere (Salas, 1972).

One analytical approach in determining the storage capacity of a
reservoir is based on the concept of the maximum accumulated deficit
of partial sums (Yevjevich, 1965). Deficit analysis of stationary
random variables has been shown by Gomide (1975) to follow directly
from the theory of Markov chains.

This paper deals with deficit analysis of seasonal series. The
preceding section presents a quick review of previous works related
to the study. A concise but thorough development of the numerical
framework of the algorithm used in deficit analysis is given in section
3. The analytical and simulation results are given in section 4. The
paper ends with a summary and conclusions.

2. Theoretical Background

The basic theory and properties of Markov chains can be found
in statistical books such as those by Feller 0968) and Kemeny and
Snell (1974). A comprehensive presentation on the subject is given
by Lloyd (1974). This section describes the basic structure and
properties of Markov chains, and then presents their applications
to solving practical storage problems.

2.1 Markov Chains and Finite Reservoir Theory

Consider a univariate discrete process x, representing a random
variable at time epoch t. A model in which the distribution of
x, at time epoch t is influenced by the k most recent realizations
only is called a k-step Markov chain; that is,

P (Xt=il Xt-l =j, Xt-2= 2, ... , Xl =u, Xo =v)

•

•

= P (Xt=i/Xt- I =j, Xt- 2 =2, ... ,Xt- k=m)
(1)
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For the particular case of simple Markov chain, the variable x, is
influenced only by the previous realization of Xt-l, and nothing
else. Thus, eq. (1) reduces to

• = P (xt=i Xt- 1=j)
(2)

The stochastic reservoir theory borrows much from the theory
of Markov chains for its practical applicability. Basically, it involves
representing the flows in discrete units and time intervals and dis­
cretizing the reservoir volume into a number of parts, thus creating
a system of equations that approximate the integral equations (Moran,
1954; 1959). The input to the reservoir is assumed to be a stationary
sequence of mutually independent "inflows, and the release rule
governed by the current storage level. It can be shown that the
sequence of storage level [St] where St is the storage level at time
epoch t, has a correlation structure of a Markov chain.

In the particular case of a reservoir with capacity K units and
water release of M units, and assuming the so-called "simultaneous
model" of inflows and outlows (Lloyd, 1963), then the matrix Q of
transition probabilities of [St] is given by

0 1 2 3 k-l k

0 FM FM-l FM-2 FM-3
0 0

'- 1 fM+l fM fM-l M-2
0 0

2 fM+2 fM+l M (3)

Q= 3 fM+3 fM+2 fM+l
0 0 0 0 0 0

k-l fM+k-lfM+k-2fM+k-3fM+k-4
0

fM-l1M

k GM+k GM+k-l GM+k-2 GM+k-3. GM+l GM

wherefr=P(xt=r), Fr=P(Xt~r) and Gr=p(Xt~r).



4 F. P. LANSIGAN

Relaxing the condition that the inflow distribution is stationary,
let the inflows be seasonal with adifferent distribution for each seas­
on in the year. Assume for the moment that the inflows are mutually
independent from one season to another. Thus, the matrix of eq. (3)
can readily be extended to the case where the transition probabilities
display seasonality, i.e. a matrix Qr is defmed for each season r. The
periodic matrices of transition probabilities account for the seasonal •
fluctuations of storage level of a reservoir.

The same methodology can be extended to seasonal correlated
inputs whereby the associated transition matrices are constructed
such that the season-to-season correlations of inflows are properly
considered. In the case of correlated stationary (annual) inflows,
Lloyd (1963) proposed the use of a simple bivariate Markov chain
to represent the simultaneous distribution of inflow and storage
level. On the other hand, Gomide (1975) represented the state of
the system for correlated inputs as a two-step Markov chain. It may ..~

. be mentioned that the former approach is more general and con­
venient than the latter since the latter approach presents difficulties
when the input ~sumes more than two values. In this study, the
procedure by Lloyd (1963) will be adopted to treat the case of
seasonal correlated inflows.

2.2 Deficit Analysis Using Markov Chains
. .

One approach to determine the required storage capacity of a
reservoir is by the maximum accumulated deficit analysis, or simply
deficit analysis, which assumes a bottomless reservoir. Before des- tI
cribing the analytical approach used in this study, the following
defmitions are in order. j

. Let [Xt ] be a sequence of random variables, and Sj = ~_ Xt,

where i=l, 2, ... n. The random variable Sj is called the cumhlative
or partial sum. The maximum partial sum Mn , the minimum partial
sum mn , and the maximum accumulated deficit of partial sums Dn
for the sample size n are defmed as .

Mn = max [0, Sl, s2' , Sn ]

mn = min [0, sl' s2' , Sn ]
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In deficit analysis, the sequence lSi] is interpreted to represent
the storage level in a semi-infmite reservoir which has a top but no
bottom.

The analytical approach to deal with deficit analysis of stationary
random variables has been shown by Gomide (1975) to follow directly
from the theory of Markov chains. The distribution of the maximum
deficit Dn can be determined using Markov chains when the state
space is such that one boundary (empty reservoir) is absorbing and
the other (full reservoir) is reflecting. In the particular case of in­
dependent stationary discrete net inputs, Gomide (1975) gave the
distribution of Dn as

. k+l (n)
p lDn~] = ~ Pk+ 1 (s, k»1)

s» 1
(5)

where the summation in the right-hand side of eq. (5) denotes "the
probability that the system does not reach state zero in the. first
n-steps, given the initial state u=k+1". For correlated inputs, a
quite different expression for P (Dn~) was obtained mainly because
he represented the state of the system for dependent inputs as a
two-step rather than as a simple bivariate Markov chain.

In this study it will be shown that the theory of deficit analysis
can be extended for seasonal inputs whereby a different transition
probability matrix is considered for each season. But due to com­
putational constraints involved in obtaining the exact distributions
of the maximum deficit for large sample size or fmer discretization
of input distributions, the analysis will be done for small sample
sizes and for simple cases of seasonal series only. However, the
basic approach applies equally well to a variety of cases.

3. Analytical Approach

This section describes the analytical approach to deficit analysis
of periodic stochastic process of independent and correlated seasonal
input series.
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3.1 Independent Seasonal Inputs

Consider the case of an independent seasonal discrete random
variable [x t ] with t=(v-I )w+r, where T denotes the season, v
denotes the year, and w the number of seasons in the year, such that
p (xt=i) =Pt(i) where i is an element of the set [ -a, -a+l, ... , 0,
. . . , a-I, a] representing the discrete values of net inflow. It is
assumed for convenience in treating matrices of the same size that
the number of states are the same for each season but the transition
probabilities may be different. Let [x t] be the net input at discrete
time t into a reservoir of size k+ I. It can be shown that the sequence
of the amount of water stored [St] follows as Markov chain with
state space [0, I, 2, ... , k+I]. Furthermore, let this reservoir
be such that the empty state is an absorbing boundary and the
full state is a reflecting boundary. Then, [St] has periodic (seasonal)
one-step transition matrix defined as:

0 2 3 k k+I
I

0: ~(-I) QT(-2) ~(-3) QT(-k) QT(-k-I)
I

1 ' 0 PT (0) PT (-1) PT (-2) PT(-k+I) PT (-k)

2 0 PT (1) PT (0) PT (-1) PT (-k+2) PT (-k+l)

P:t (k+l) = 3 0 PT (2) PT (1) PT (0) PT (-k+3) PT (-k+2)

k 0 PT (k-I) PT (k-2) PT (k-3) PT (0) PT (-1)

k+I 0 uT (k) uT (k-I) uT (k-2) ... uT (1) uT (0)

I•

where

UT (j)= PT (j)+PT (j+I)+PT (j+2)+ ...

and

(j=O,I,2, ... k)

QT (j) = PT (-j)+PT (-j-I )+Pt(-j-2)+ ... (j=I, 1,2, ... ,k+I).

•
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The matrix P: (k+1) can be partitioned as

P*(k+l) =r 1 4 T(k+ l)l
T l.:?T(k+1) PT(k+1) J

where 0 T(k+1) is a zero column vector of size (k+1), L; (k+1) is the transpose

of column vector 4 (k+1) or

L~(k+1) = [~(-l) £T(-2) . . . 2;(--k) £T(-k-l)]
and P, (k+l) is the so-called 'restricted' matrix for season T.

From the seasonal restricted transition matrix PT (k+ 1) a product matrix

R (m ) . b . d
k+l IS 0 tame as

where m is the total number of seasons in the planning horizon, say,
of n years, the subscript r (i) is defmed as•

(m) m
Rk + 1 = n PT(i) (k+l)

i=1

1'(;) =(m+I-i) - [(m-i)/w] . w (9)

(8)

•

where w the number of seasons in a year, and [(m-i)/w] denotes
the integer part of the number in the argument. The superscript in

R (m) is used only to indicate the total number of matrices involved
k+l

in the product. (m) (m)

The matrix R with elements denoted by r (i, j) gives the
(k+l) k+l

probabilities of transition from state j to state i in m steps. Hence,
k+ 1 (m)

~ r (s, k+ I) is the probability that the reservoir initially
s= 1 k+l

full does not end up empty at the end of m seasons which is essential­
ly equivalent to P (Dm :Q{), i.e.

_ k+l (m) (10)
P(Dm~k) - S~1 r k + 1 (s, k+l)

From the above equation it follows that

k+l (m) k (m)
P (D =k) = ~ r (s, k+ I) - ~ rk (s, k) (II)

m s=1 k+l s=1
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Equations (11) can be used for any non-stationary or seasonal net
inputs provided that the seasonalinputs are independent.

Note that as the number of states of the discretized inputs in­
creases, the. size of the transition matrices as well as the amount of
computations required also increases. Hence, a trade-off should
be made between accuracy and costs.

3.2 First-OrderMarkov Seasonal Inputs

In determining the distribution of the maximum accumulated
deficit Dm of seasonal correlated inputs, an attempt will be made to
formulate the analysis in a manner similar to that used for the
seasonal independent case described in the previous section.

Let the water stored in the reservoir s, be augmented by the net
input x, in the time interval (t, t+ I). That is,

St+l= St + x, (12)

is the reservoir storage at the end of such time interval. Note that
the pair of variables (St, x t) are independent.

Recall from the previous section that when the inputs x, are
independent, the sequence of partial sums [St] is a simple Markov
chain. When the net inputs are serially correlated [St] is no longer
a simple Markov chain since the current net inputs depends on the
previous inputs. The method used in this study is to build into the
model the persistence pattern of the inflows, and at the same time
maintain the Markovian structure of the system. The serially cor­
related inputs [Xl] is represented by a Markov chain and the pair
[St., Xt] is treated as the state of the system which is defined by a
bivariate Markov chain describing the simultaneous distribution of
St and x, at time t, In this approach, seasonality of inputs can readily
be incorporated by using seasonal bivariate transition probability
matrices.

Consider the case of w seasons per year. As in the case of seas­
onal independent inputs, the inflows [Xt] into the reservoir and the
storage level [St] will each have a common distribution defmed for
each season. Let the reservoir be of size k+I, and let the state space

•
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of the reservoir be such that the empty state is an absorbing boundary
and the full state is a reflecting boundary. For example, suppose that
for each season the discrete net inputs [x t] can only assume values
(-1, 0+1) with different marginal probabilities, {or each season.
Thus, [St, Xt] follows a periodic bivariate Markov chain with transi­
tion probabilities defined by

(0,-1) (0,0) (0,-1) ... (k+l,l) (k+l,O) (k+l,l)

(0, --1)
(0,0) .
(0, 1)
(1, -1)

P; (k+l)(1, 0)

(1, 1)

(k+l, -1)
(k+l,O)
(k+l, 1)

Pr (sil uj) (13)

•

wherepT(si/uj) = Pr (St=s, Xt=i/St_l=u, Xt-l=j)

and r = 1, 2, ... , w.

The matrix P: (k+1) of eq. (13) can be partitioned as

rAr (0) Cr (k+ 1~
P";- (k+l) = LBr (k+1) PT (k+l~ (14)

where AT (0) is a partitioned matrix of size (axa), a is the number of
states of net inputs (a=3 in this case), corresponding to the transition
of storage from empty to empty, B

T
(k+l) is a matrix of size

[a(k+l)xa] corresponding to the transition from empty to non­
empty, CT (k+1) is a matrix of size [axa(k+l)] corresponding to
the transition fron non-empty to empty, and Pr (k+1) is the 'restrict-
ed' bivariate transition matrix for season r. .
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The distribution of the maximum deficit Dm for m seasons in
the planning horizon can be determined from the product of m

'restricted' bivariate transition matrices. For any m, the element

ri':i (silk+I, j) is defmed from the product matrix Ri:i as

(15)

where TO) is defmed as in eq. (9). The (si, uj) entry in the matrix

Ji.;;;1 represents the transition (sm=s, Xm = i] So =u, Xo =j). Hence
k+l
1; ~ 1;. rk~"l'> (si Ik+ I, j) p(xo=j) is the probability that the

s= 1 I J

reservoir initially full at the beginning of season I does not become
empty in m seasons.

Thus, the distribution of Dm of seasonal correlated inputs is
~venby •

k+l
P (Dm~k) = 1; 1; 1; r(m) (silk+l,j) p (xo=j) (16)

s=1 i j k+ 1

from which it follows that

k+l
P (Dm =k) = 1:: 1::

s=1 i
~ rl~~ (si I k+ I, j) p (xo=j)
J

(17)

•
It is interesting to note the similarity in the form of equations

(11) and (17). The basic difference i~ on how rl~'>l (s, k+ I), for
seasonal independent inputs, and rl-":.~ (silk+I, j), for seasonal
correlated inputs, are defined as well as the inclusion of the pro­
bability of the initial state of the net input in the latter.

4. Analytical and Simulation Results

In actual situation the inflow into the reservoir is a continuous
random variable which can assume any value in a fmite range. For

•
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the practical use of the theory, however, the continuous variable
is represented by a discrete variable. As the number of discrete
states increases the accuracy of the discrete approximation of the
continuous process also increases. But coupled with the increase
in accuracy is the attendant increase in the amount of computations
involved. Therefore, some trade-off must be made which will depend
on the extent of the data and facilities as well as budget available.

To illustrate the method described earlier a 3-state discrete
representation of the inflows to the reservoir and a 4-season year
time frame are adopted herein. However, for actual technological
application in an engineering scale, the method would apply to the
more detailed and complex cases as well.

The maximum accumulated deficit is a random variable derived
from the cumulative or partial sums of the seasonal net input variables.
Since these variables have seasonal or periodic parameters, properties
of the maximum deficit D, such as the expected value E(Dm ) and
variance Var (D m ) for given sample size m (number of seasons),
are functions of such parameters. In the absence of analytical expres­
sions for E(Dm ) and Var (Dm ), a numerical study of the distributional
properties of Dm can be made. Results of the numerical study of
E(Dm ) and Var (Dm ) computed based on the probability distribu­
tion of Dm are also checked by data generation method.

4.1 Independent Seasonal Inputs

The numerical comparisons of the functional dependence of
E(D) and Var (D) of the 3-state, 4-season independent net inputs

• (-1, 0, +1) for different combinations of the seasonal parameters
are shown in Figs. 1 and 2, respectively. The plot of E(Dm ) with m
(number of seasons) in the case of constant variance show that the
expected deficit is a smooth increasing function of m. In the case of
periodic variance, E(D m ) is an increasing periodic function of m with
same period as that of the seasonal variance. Furthermore, as the
periodicity of the seasonal variance increases, the difference of the
periodic deficit also increases. It can also be observed that E(D m ) of
inputs with periodic (seasonal) variances oscillates around E(Dm )

of inputs with variance equal to the average of the periodic variances.

•
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It appears that the periodicity in E(Dm ) tends to die out as m
increases, with E(Dm) approaching the mean value for the stationary
case (case 1). Moreover, cases (3) and (4), which correspond to asy­
metric periodic variance, have the E(Dm ) to be either above or
below the E(Dm ) of constant variance (case 1) depending on whether
the periodic variance begins with a variance larger or smaller than the
average variance, respectively. Of course, in all cases E(Dm ) will •
converge to E(Dm ) for constant variance as m increases. The same
thing is true for Var (Dm) except that, as noted above, Var (Dm)
for periodic variances are smaller than Var (Dm ) for constant variance
although convergence occurs as m increases.

The results obtained by the numerical method were also verified
by generating simulated samples from which the mean and variance
of deficits of seasonal inputs were computed. The computed values
by simulation are plotted in the same figures corresponding to the
different cases studied. The plots show the close agreement between
the expected deficit and the variance of deficit of seasonal input
series .obtained by both the numerical and the data generation
methods.

4.2 First-Order Markov Seasonal Inputs

The seasonal net input process with an underlying first-order
autoregressive dependence structure is approximated by a Markov
chain with seasonal or periodic transition probability matrix. For
illustrative purposes consider a 4-season year, and 3-state correlated
net inputs (-1,0,+1) and four combinations of seasonal parameters as
follows:

(1) a;. = 0.50, s(OT) = 0.00, PT = 0.30, and s(PT) = 0.00

(2) 0;. = 0.50, S(OT) = 0.1581, {iT = 0.30 and s(PT) = 0.00

(3) 0;.= 0.50, S(OT) = 0.00 ,PT = 0.30, and s(PT) = 0.20

(4) 0;.= 0.50,s(oT) = 0.1581 PT=0.30, and S(PT) = 0.20

In all cases considered the seasonal net inputs have mean zero.

•
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•

•

•

It is also interesting to study the distribution of the standardized
deficit of s asonal net inputs, i.e. the distribution of~ = (Dm -E
[Dm ])/ Var(Dm ) . Figure 3 gives the standardized exact density
function of Dm for m=60 of the seasonal symmetric discrete in­
dependent net inputs (-1,0, +1) with a~ = 0.40 and s(a~) = 0.20, and
the standardized asymptotic density. The' plot shows that the asym­
ptotic result is remarkably a good approximation when corrected
for the first and second moments. Thus, if the approximate distribu­
tion of the maximum deficit of seasonal inputs is desired, it suffices
to correct the standardized asymptotic distribution of deficit for the
mean and variance of deficit.

The E(Dm) computed numerically are shown in Fig. 4 for the
four cases listed above. One characteristic shown is that the expected
deficit of variables with periodic standard deviation and periodic
correlation is in general and increasing periodic function of m and is
higher than those with a constant standard deviation for m ~ 12.
The plot of E(D m ) against m for the case of constant standard
deviation but periodic PT shows that it has a small effect on the
periodicity of E(Dm) compared to the case of constant correlation.
However, it appears that this effect is greater when the standard
deviation is periodic.

Figure 5 shows the comparison of the variance of deficit for the
cases considered. Periodicity in either the standard deviation or
autocorrelation yields increasing periodic variance of deficit as m
increases. Cases (1) and (2) show the effect of the periodic standard
deviation aT on Var (Dm ) . Since a, starts with a value smaller
than a (case 1), then Var (Dm ) for case (2) is smaller than Var (Dm )

for case (1) for m=l=w, 2w, 3w, ... , where w = 4. Cases (1) and (3)
show the effect of-the periodic correlation PT' Initially, Var (Dm )

for case (3) fluctuates (periodically) around Var (Dm ) for case (1),
however, after a few cycles (about 3 cycles in this example) it
appears that Var (Dm ) for case (3) drops below that of case (1)
except for m equal to multiple of w for which the values are the
same. Cases (1) and (4) show the effect of both periodic aT and
periodic PT' It is clear that after a few cycles (2 cycles in this case)
the Var (Dm ) for periodic aT and PT is larger than Var.(D m ) for
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constant uT=u and PT=P, except for m=jw+w/2 where j ~ 2 and
w=4. It must be noted, however, that in all cases analyzed, the values
ofVar (Dm ) must converge to the same as m approaches infinity.

5. Summary and Conclusions

Previous studies elsewhere (Gomide, 1975) have shown that
deficit analysis of annual stationary series follows directly from the
theory of Markov chains when the state space of the process is such
that one boundary is reflecting and the other is absorbing. In this
paper, the same approach is extended to the case of periodic seasonal
series. It has been shown that the distribution of maximum deficit
of seasonal inputs can also be determined following the theory of
Markov chains with seasonal transition probabilities.

For the independent input case, deficit analysis of seasonal
inflows involves the use of periodic univariate one-step transition
probability matrices to represent the possible transition of storage
level for each season. The case of seasonal first-order Markov inputs
is treated in such a way that the simultaneous seasonal distribution
of storage level and net input is represented by a seasonal bivariate
Markov chain.

Some examples of the numerical approach to the distribution of
maximum deficit for simple cases of discrete seasonal net inputs
assuming a four-season year are given. However, the same general
algorithm applies equally well to any number of seasons in a year
and any number of discretized states of net inputs. Numerical
study of the properties of the maximum deficit such as the mean
and the variance show that they are also functions of the seasonal
parameters of the series such as the seasonal means, seasonal standard
deviations and seasonal correlations. The expected value and variance
of deficit of seasonal inputs with periodic parameters are also period­
ic, and converge to the corresponding value of the mean and variance
of deficit for stationary case as the sample size increases.

•

. I•

•

•
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